Integrating Deep Learning Frameworks into Main-Memory
Databases

Maximilian Rieger
Technische Universitat Minchen
max.rieger@tum.de

ABSTRACT

Data analytics has evolved to include complex and computationally
expensive methods, especially deep learning. While in the past
mostly analytical SQL queries were used, the current landscape
is divided into database systems that manage the storage of data,
and deep learning frameworks that can efficiently process complex
algorithms. The communication between two systems creates an
inherent performance bottleneck as it requires exporting data from
a database system and importing it into a deep learning framework.
The strict separation between both systems also prevents users
from combining the use of existing SQL features with complex data
analytics pipelines.

In this paper we present an approach to integrate deep learning
frameworks directly in a database system to overcome these draw-
backs. We take the widely used framework PyTorch and integrate
it into our main-memory-first database system Umbra. We demon-
strate how PyTorch modules can be used directly in SQL queries
and show that this leads to efficient execution of deep learning
workloads directly in the database system.

AIDB Workshop Reference Format:
Maximilian Rieger, Moritz Sichert, and Thomas Neumann. Integrating Deep
Learning Frameworks into Main-Memory Databases. AIDB 2022.

1 INTRODUCTION

Modern data processing techniques are evolving quickly. In partic-
ular deep learning methods have become popular in recent years.
For deep learning, specialized systems such as PyTorch [17] and
TensorFlow [1] are often used. They offer an easy-to use API that
provides several building blocks for deep learning analytics. These
building blocks can be combined to formulate complex analytics
pipelines for many different use-cases.

The data that is processed by deep-learning frameworks often
comes from data-warehouses. Data-warehouses use traditional re-
lational database systems to manage and analyze data which is con-
solidated from different sources. Database systems provide versatile
data manipulation and analysis capabilities using SQL. However,
database systems usually provide neither the accelerated computa-
tional capabilities required for deep learning nor are current SQL
dialects suitable to express complex deep learning models.

Storing data in data-warehouses but processing it in special-
ized deep-learning systems leads to costly communication between
both systems. Moving data between different processes on the same

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and AIDB 2022. 4th International Workshop
on Applied Al for Database Systems and Applications (AIDB 22). September 5th, 2022,
Sydney, Australia.

Moritz Sichert
Technische Universitat Minchen
moritz.sichert@tum.de

Thomas Neumann
Technische Universitat Miinchen
neumann@in.tum.de

/ N\

Ri ¢ PyTorch

X
/ N\
R, Rs

Figure 1: PyTorch Operator in a Relational Algebra Tree. Our
system integrates PyTorch as an operator into the relational
algebra of an existing database system. This allows full in-
teroperability of PyTorch and SQL.

machine or even different machines inevitably increases query la-
tencies. Especially for nested queries, where the output of machine
learning models is further processed within the database, commu-
nicating between two systems creates a severe bottleneck.

In this work we present our Integration of the deep learning
framework PyTorch [17] into our database system Umbra [14]. We
eliminate most communication overhead between PyTorch and the
database by directly integrating it into the query and execution
engine as a relational algebra operator.

We chose the PyTorch framework as it is widely used to de-
sign, train, and apply deep learning models. PyTorch’s extensive
capabilities enable many new use cases for the database system.
Additionally, PyTorch allows to accelerate linear algebra operations
using GPUs out of the box. The easy to use interface of PyTorch
models make the use of these methods available to a broad range
of users. Considering that many models might be created using
PyTorch anyway makes the possibility to just import these more
attractive. Not only does the integration of PyTorch enable these
things, it is also vastly less implementation effort to add a frame-
work than to create a custom solution within the database system.

Our relational database system Umbra leverages modern tech-
niques to provide in-memory query performance as long as the
working set fits into RAM. Umbra uses just-in-time query com-
pilation to generate highly optimized machine code to achieve
optimal throughput. Combining Umbra’s excellent query execution
speed with PyTorch’s deep learning capabilities results in modern,
efficient, yet easy-to use deep learning analytics pipelines.

2 RELATED WORK

Kraska et al. identified that not only are machine learning based
methods an interesting topic for modern database systems, but

create function regression(table)
returns table language 'PyTorch' as $$(
module = 'my_module.pt',
input_shape = (2),
inputs = (x, y),
input_type = float32,
output_type = floatb64,
output_size = 2,
gpu = true,
batches = false,
)8;

select id, name, x, zl, z2 from regression(
table (
select id, name, x, y from customers

)3
Listing 1: Usage of the PyTorch operator directly from SQL.
A PyTorch module can be defined by using create function.
It can then be used as a table function in SQL queries.

the tight integration of machine learning algorithms into database
systems forms also an interesting topic [9]. We divide existing
approaches into separated systems, which of course suffer from
communication overhead, and integrated machine learning solu-
tions, which are generally restricted in some ways.

Connecting Databases to Regular Data Processing. The deep learn-
ing framework TensorFlow provides a way of retrieving data from
SQLite database engines [26]. Furthermore, it includes an experi-
mental feature IODataset, which can connect to a Postgres endpoint
[25].

Katsipoulakis et al. [7] propose a general way of integrating
machine learning into SQL and streaming data between storage
and processing systems.

Khan et al. present Fireworks [8], which includes data retrieval
from databases using SQLAlchemy [24] as a part of their machine
learning pipelines.

All of these methods require a transfer of all input data from the
database to a processing environment. Especially nested queries,
which require multiple environment switches will be negatively
affected by this.

Integrated Machine Learning in Databases Systems. Microsoft
SQL Server’s stored procedures use Python and R scripts to execute
virtually arbitrary processing, including deep learning [4]. Further-
more, Microsoft SQL Server provides access to many data mining
methods including clustering, decision trees, and basic neural net-
works [2]. Microsoft’s ML system Raven adds ONNX models to SQL
Server and Spark and shows interesting optimizations for queries
using tree-based models [6] [16]. Raven improves ONNX Runtime
performance of deep learning models leveraging SQL Server’s exe-
cution parallelization and model caching.

Google’s cloud-based data warehouse BigQuery supports the
use of various classical machine learning methods including deep

learning models with extended SQL [3]. Furthermore, it allows
to deploy trained TensorFlow models. Amazon’s sagemaker can
be accessed from the database systems Redshift and Athena [11].
In contrast to our work, these systems are divided into distinct
services instead and inherently have larger communication costs.

Oracle provides a set of machine learning algorithms including
simple neural networks to use directly within SQL queries [15].
Oracle’s implementation performs all computations in the database
kernel, which avoids the need to move the data for processing.

Sandha et al. present the integration of linear regression and
basic neural networks directly integrated to the Teradata SQL En-
gine using a Python runtime [19]. Their distributed approach is
especially interesting for expensive training algorithms.

With TensorDB Kim et al. present a database system which adds
tensor data types to the relational model, supporting many tensor
operations. Missing automatic differentiation and GPU support
render it, however, impractical for neural networks.

Luo et al. [12] extend the parallel database system SimSQL to
support linear algebra, which can be used for a number of machine
learning tasks.

With MADIib, Hellerstein et al. create a comprehensive open-
source machine learning framework based on SQL and user defined
functions for Postgres and Greenplum [5]. While the concepts of
MADIib are transferable between database systems, it currently
only supports Postgres and Greenplum Database.

Schiile et al. introduce lambda expression based tensor process-
ing with automatic differentiation to the main-memory database
HyPer [20]. Due to its lack of syntactical abstractions and GPU
support it is only of limited use for sophisticated deep learning
models. In their follow-up work, Schiile et al. add the above lambda
expression based tensor processing to the Umbra database system,
adding just in time GPU code generation [21]. The use of just in
time compilation of GPU code allows query specific optimizations.

3 INTEGRATING PYTORCH INTO UMBRA

To integrate modern machine learning capabilities directly into
databases, we integrated the high performance deep learning frame-
work PyTorch into our research database system Umbra [14]. Specif-
ically we leverage PyTorch’s implemented deployment method
called TorchScript modules to apply machine learning models and
also algorithms created with PyTorch directly into Umbra’s execu-
tion engine.

To integrate PyTorch into Umbra, we extend the relational alge-
bra by adding a new operator called PyTorch operator. Users can
define input values to their modules using standard SQL, and use
the outputs of the module just like results of nested queries. Hence,
it is also possible to alternate between regular SQL data processing
and TorchScript modules within a single query. Furthermore, the
user can choose to execute any module on the GPU, leveraging the
vast performance advantage of vectorized computation on GPUs.

Listing 1 shows how a TorchScript module can be used directly
from SQL. An existing module can be added to the database system
by using a create function statement. This new user defined func-
tion takes a table as an argument, as indicated by the table (...)
syntax, and returns a new table as result. It contains the path to the
module file and some additional parameters that specify its input

id name x

i

forwarded 0.7
attributes

0.7 | 2.5 | PyTorch input

<~

O PyTorch

.S‘+

Z1

5.4 PyTorch output

)\ N

id name x z

42 | Max

Z2

1
0.7 | 5.4 | 1.3 |

output tuple

Figure 2: Conceptual flow of tuples processed by the PyTorch
relational algebra operator. The attributes of every input
tuple are stored in a temporary buffer for all forwarded at-
tributes and/or passed to the PyTorch module. The output
tuple consists of the forwarded attributes and the output of
the PyTorch module.

and output types. SQL queries can use the module like a table func-
tion. In our example the TorchScript module takes some metrics of
a customer from the attributes x and y, runs a regression on them,
and finally outputs the two values z1 and z2 for every customer.
This syntax comes with some limitations: Each scalar value for the
input tensor must be stated explicitly as an expression, in this case
(x, y). This list of expressions is restructured as a tensor using
the input_shape information. Each input tuple will be converted
to this shape, variable shapes are not supported.

Umbra’s query optimizer does optimize the input to the PyTorch
operator as well as the query on its outputs separately. Although
out of scope for this work, it would be possible to implement a joint
optimization of the whole query to allow e.g. predicate pushdown
or reordering the operator with regard to joins. This would require
the user to ensure that the module does not necessarily require
the input defined by the input query, and manually toggle whether
optimizations are allowed.

3.1 Umbra’s Execution Model

Umbra features main-memory performance while still being able
to efficiently load data from disk.

Umbra’s execution model is based on the tuple pushing model.
In contrast to the iterator model, which is widely used in other data-
base systems, operators in this model do not request new tuples
from their input operators by calling a next () function. Instead,

each operator pushes its current tuple to the respective output
operator’s consume () function. Scan operators scan the base rela-
tions and push all tuples to their output operator. This operator
in turn pushes each tuple further to the next operator. This goes
on until an operator in the hierarchy needs to materialize its in-
put, e.g. a join or an aggregation. We call these operators pipeline
breakers. The sequence of operators between two pipeline breakers
forms a pipeline. One big advantage of this model is, that tuples are
never materialized within a pipeline, which reduces the load on the
memory.

A Pipeline conceptually forms a large for-loop, which iterates
over all tuples and then performs all operations on it, until the
resulting tuple gets materialized. To saturate the main-memory
bandwidth, Umbra uses code-generation to translate these loop
structures directly to efficient machine code [13].

This generated code can scale well even on systems with hun-
dreds of cores. Umbra’s query execution system leverages morsel-
driven parallelism [10] to achieve this scalability. Several threads
can execute the same pipeline concurrently. Each thread works on
its own morsel of the input data and materializes outputs in its own
data structures. After all threads executing a pipeline finished, the
output data structures are merged to a single data structure.

3.2 TorchScript Modules

TorchScript modules are a way to export models created with Py-
Torch and Python and call them from C++ code. We consider this a
good approach to enable deep learning engineers to deploy their
models to our system without changing their development work-
flow.

A TorchScript module takes a PyTorch Tensor object as input.
In the example depicted in Figure 2, the input tensor consists of the
two float values x and y. To apply the module to several elements
at once, the values of multiple elements can be concatenated to a
single tensor. When a module is applied to an input tensor it outputs
a single Tensor object, which holds the resulting values for each
input element. In Figure 2 the resulting values for the input tuple
are z; and zz. All necessary computations and model parameters
to execute the module are stored as a part of the module itself. By
applying Torchscript modules, our operator supports inferencing.
We consider updating or training new modules out of scope for this
work.

The versatility of TorchScript modules allows us to use them
not only for deep learning models. We can implement any algo-
rithm as a TorchScript module. PyTorch executes modules using a
light-weight interpreter, which supports a subset of Python. Hence,
it is possible for users to implement and use algorithms through
our operator, but we do not implement full support for user de-
fined Python functions. E.g. it is not possible to use any Python
libraries except PyTorch and Python’s builtin math module. Of
course, although this interpreter is optimized, it is slow compared
to optimized and compiled C++ code. However, if tensor operations
make up the majority of the workload, the module can benefit from
PyTorch’s efficient vectorized implementations. This includes a
large set of common machine learning algorithms, which can be ex-
ecuted quickly. So while implementing merge-sort as a TorchScript

module may be extremely slow, we will show that e.g. the K-Means
algorithm can be implemented well as a TorchScript module.

3.3 Dataflow Schema

Every tuple that is processed by the PyTorch operator is processed
conceptually as shown in Figure 2. Some or all attributes of the
operator’s input may be used directly by a TorchScript module. So,
these attributes are taken from the input and passed to the module.
Some attributes will not be used by the TorchScript module directly
but the output of the PyTorch operator should still contain them.
These forwarded attributes need to be stored independently from
the TorchScript module. Later, they are combined with the output
of the TorchScript module to generate an output tuple. It is possible
for attributes to be forwarded and passed to the TorchScript module
at the same time, such as the attribute x in Figure 2.

This dataflow schema fits well into Umbra’s tuple pushing model.
The PyTorch operator forms a pipeline breaker, which materializes
both, the input values for the TorchScript module and the forwarded
attributes. Then, it applies the module in some way to all input
tuples and stores the respective outputs. Finally, it iterates over
the materialized forwarded attributes, finds the respective output
values for each tuple and pushes the combined output tuple to
the output operator. An implementation for this rough outline is
depicted in Figure 3.

In the following we distinguish two fundamental approaches to
applying PyTorch modules to input elements.

3.3.1 Mini-Batches. Large deep learning models usually use a lot
of memory to process their input, scaling linearly with the number
of input elements. To meet memory restrictions, especially on GPUs,
we have to apply them only to very small sets of input elements, so
called mini-batches. Our PyTorch operator can split large input sets
into mini-batches and apply the TorchScript module to each batch
individually.

3.3.2 Single Batch. There are also use cases where it is strictly
necessary to feed all inputs within a single batch to the module.
For example, our PyTorch implementation of K-Means requires all
data points at once to apply proper clustering. Hence, the PyTorch
operator also supports creating a single PyTorch Tensor from all
input elements and then applying the TorchScript module to all
elements at once. We call this the single batch method.

3.4 Dataflow Implementation

For both, the mini-batches and the single batch method, we use a
uniform strategy to materialize the input values for the module as
well as the forwarded attributes of each tuple. After the material-
ization, the PyTorch operator implements different strategies for
each batching method.

3.4.1 Uniform Materialization. We use chunked lists which are
tailored specifically to Umbra’s execution model to materialize
incoming tuples. Chunked lists consist of blocks of memory, called
chunks. An example of a chunked list is depicted in Figure 4. A
chunk can be instantiated with an arbitrary size of memory to store
tuples of different, arbitrary sizes. The size of a chunk is store in
its header. Each chunk has a header which stores the total size of
the chunk and a pointer to the next chunk to form a linked list of

chunks. Tuples are stored in the chunk’s memory following the
header.

During pipeline execution every thread uses a thread-local chun-
ked list to materialize tuples. If a chunk has too little memory left to
store the next tuple, we create a new chunk and link it to the previ-
ous one. Further tuples are then stored in the new chunk. After the
pipeline is done, the thread-local chunked lists need to be merged.
Merging two chunked lists is very easy, because we only need to
change the next pointer of the last chunk in one list to point to the
first chunk of the other list.

When the PyTorch operator consumes a new tuple from its
incoming pipelines, it splits the tuple into input values for the
TorchScript module and the forwarded attributes. The different
parts of the tuple are stored in two separate chunked lists as shown
in Figure 3. To keep track of the positions of each tuple, we keep
track of the order of incoming tuples and store the index of the
first contained tuple in each chunk. Note, that the order is the same
in both lists. We need to pay special attention when merging the
thread local lists to maintain the same order in both lists. Both lists
need to be merged in the exact same order. After merging the tuple
index in each chunk needs to be updated to account for previous
tuples of other thread local lists.

Collecting the Input Tuples. The input values for the module
are all materialized in a uniform data type which is set by the
TorchScript module, most commonly float32. The module also
specifies the number of value per input element. So, because the
number of attributes that need to materialized for every tuple is
fixed and known before query processing, they are arranged in
memory like a two-dimensional array.

Forwarding Tuple Attributes. In contrast to the restricted format
of the module inputs, forwarded attributes can have different types,
including strings. Hence, the size of individual materialized tuples
can vary as shown in Figure 4. Consequently, the number of tuples
per chunk varies, too. Because the materialized tuples have variable
sizes, it is not easily possible to directly fetch a tuple at a given
index. For this reason we store the ordinal position of each chunks
first tuple in each the chunk header for both lists.

3.4.2 Processing Mini-Batches. The first of our two approaches to
apply TorchScript modules is using mini-batches. In this approach
we repeatedly load a small subset of the tuples as a PyTorch Tensor
object to which we apply the module. As our input values are
already stored in an array-like manner within chunks, the chunks
can be used directly as inputs to a TorchScript module.

Applying Modules to Mini-Batches. To meet the possible memory
constraints of applying TorchScript modules, we apply the module
sequentially to all mini-batches. Usually, mini-batches are much
smaller than the chunks generated by the materialization of the
inputs by the PyTorch operator. Thus, we conceptually split a chunk
into multiple mini-batches. As the values in the chunks are already
materialized like a two-dimensional array, entire chunks or parts
of it can be referenced directly as PyTorch Tensor objects without
creating copies of the data. We can then apply the TorchScript
module to these Tensor objects. In turn, we receive the output of
the module as a new Tensor object and store it in a list. Then, we
load the next mini-batch and proceed in the same way. At the end

© Y = = [

Input Chunked List of Tensor View of Vector of Output
Operator Input Tuples Inputs Tensors
o Gl
o Gl
Scan o Gl
‘ ° GEED
Chunked List of Merged Output
Parallel .
st | Forwarded Attributes Tuples Operator

Figure 3: Dataflow of the PyTorch operator using mini-batches. Incoming tuples are materialized in two chunked lists. One
for forwarded tuples and one for inputs to the TorchScript module. The inputs are then loaded as tensors and the module is
applied to them. The results are stored in a list. Finally, the operator iterates over the forwarded attributes of all tuples, looks
up the respective output values for each tuple and pushes the merged tuple to its output operator.

Chunk 1 Chunk 2
firstElementindex: int firstElementindex: int
size: int size: int
next: void* next: void*
t1 t5

t1 t5 ‘ 6
t 2 t6

t2 6 ‘ t7

t3 t7

t4 t7 ‘

Figure 4: Visualization of a chunked list of forwarded at-
tributes

of a chunk, we load a smaller mini-batch if necessary. This part of
the dataflow is depicted at the top of Figure 3.

We keep track of the ordinal position of the first tuple in each
mini-batch. This allows us to match the outputs of the module to
the forwarded attributes.

Merging Forwarded Attributes with Results. After applying the
TorchScript module to all mini-batches, the PyTorch operator holds
two collections of data: the unchanged chunked list of forwarded
attributes and the list of output tensors generated by executing
the modules. To be able to generate output tuples, which contain
the forwarded attributes as well as the output of the TorchScript
module, the PyTorch operator needs to merge the two collections
again.

To implement this in the morsel-driven parallelization frame-
work used by Umbra, we iterate over the materialized list of for-
warded attributes using several threads. As described above, we

already keep track of the ordinal positions of the forwarded at-
tributes and the outputs of the module. Thus, while iterating over
the forwarded attributes, we know the absolute position i of the
current tuple. To efficiently find the module outputs for the tuple
at position i, the worker threads exploit the fact that the order
of elements in both lists is equal and strictly ascending. Also, the
output tensors are collected in a vector of references to these ten-
sors. Together, this means that a binary search over the vector of
output tensors can be used to efficiently find the module output
tuple with index i. At the end, the forwarded attributes from the
current iteration are combined with the output attributes found
by the binary search to form a new output tuple of the PyTorch
operator which is passed to its parent operator.

To avoid performing a binary search for each tuple, we maintain
the current position within the tensor so that we can access the
immediately following element in constant time. Finding the output
of the next tuple is done by simply accessing the next element in
the current Tensor object. When the current tensor contains no
more tuples, the next tensor in the vector of tensors is selected, still
without requiring a binary search.

3.4.3 Processing Single Batch. As mentioned in Section 3.3.2, we
want to support applying the TorchScript module once to all input
values at the same time. This is required to implement and apply
some algorithms, e.g. K-Means, as TorchScript modules.

Moving to Single Batch. To load the input values for all tuples as
a PyTorch Tensor object, they need to be stored contiguously in
memory. Like when using mini-batches and as depicted in Figure 3,
initially they are materialized in a chunked list. Since our execution
runs multi-threaded and the query execution does not know the
number of tuples the PyTorch operator will receive in advance, it
is not possible to materialize them in contiguous memory directly.

Only after the entire input is collected, the exact number of tuples
isknown. As the inputs are distributed over several different chunks,
but the TorchScript module expects one contiguous are of memory,

Chunk 1 Contiguous Address Space
< t < t
@ Q
& 4
o t2 &) o t2 13
o t4 m t4
@ ()
g g
3 3
@ o
i< j=3
@© @
a a
D T 7 ‘
Chunk 2 o
4
o 8 ‘ t9
T 7 ‘
% ° ‘ t10
a t8 ‘ t9 g
— a 1
9 ‘ 1o i 12
& °
o 11 =
LI o
- t12
@
i<
©
o

Figure 5: Visualization of alignment problems that arise,
when the memory pages of all chunks are simply mapped to
a contiguous address space. As memory page C is only partly
filled, there remains a gap after tuple t6 in the new address
space.

we need to combine the chunks. To avoid unnecessary, expensive
copies of memory by copying the contents of all chunks into a
newly allocated array, our implementation uses a sophisticated
memory remapping strategy.

Memory Mapping. The mmap system call in POSIX systems pro-
vides a way to map the contents of a file to a virtual memory address
region. It allows us to choose the virtual address we want to map
the file to. It is also possible to use mmap multiple times on the same
file resulting in distinct virtual memory address for the same file
contents.

We can use this feature of mmap to efficiently create a contiguous
area of virtual memory for a single Tensor object without using
expensive copy operations: First, we store all collected module in-
put data in a memory mapped file. Then, we map this file again to
a new virtual memory address space in a suitable order. The result-
ing virtual address space can be viewed as any other contiguous
memory region.

As we do not need actual files on disk, we create files which only
live in main memory and do not interact with the file system with
the memfd_create system call. This avoids performance impacts
of the file system and disk access.

Alignment Requirements. Even though this memory mapping
technique seems to perfectly fit our use case, there are some con-
straints, which make it non-trivial to use. Specifically we are faced
with two distinct alignment requirements.

(1) The address at which mmap places a memory mapped file
needs to be a multiple of the operating system’s page size.
In our case, this is 4096 bytes.

(2) Each element in a Tensor object must be placed at an offset
which is a multiple of the size of a single element, starting
from the first element in the tensor. An element consists of
a fixed number of fixed-size values.

Additionally, we need to prevent gaps between elements in the
Tensor object, as we would apply the module to these “gap values”,
too, which would alter the results for some algorithms such as K-
Means. Figure 5 displays a case where plain mapping of all memory
pages results in an alignment error. In this example, we map the
pages of Chunk 1 at the beginning of our address space and the
pages of Chunk 2 at the end of our address space. The last tuple t6
in Chunk 1 does not end at the end of its memory page C. The next
tuple t7, which is stored in Chunk 2 is located at the beginning of
page H. Even after we mapped page H right after page C, there is
still a gap between t6 and t7.

Hybrid Mapping and Copying. To meet alignment requirements
and avoid copying as much as possible, we use the following algo-
rithm: We create a list of references to all chunks in the chunked
list and sort it by their size. To avoid needing to copy the largest
chunks, we start with the largest chunk and map it into our new,
contiguous memory address space. Then, we iteratively take the
next largest chunk and map it to the end of the contiguous address
space. Due to the alignment requirements, this creates gaps be-
tween the individual chunks, as depicted in Figure 5. We use the
smallest chunks to fill these gaps by copying their contents into
the gaps. We call this strategy the hybrid method, because it uses
both memory mapping and copying for some values.

Figure 6 shows how the hybrid method is applied to a set of three
chunks. First, the largest chunk (Chunk 3) is selected and mapped
in to the new address space. The tuples t13 to t24 are now at the
beginning of our new address space. After t24 there is still some
space left in the memory page, so we cannot map the next chunk
directly. We use tuples from Chunk 1, the smallest chunk, to fill
the space. As the end of page T does not align with the end of the
copied tuples, we insert a new memory page X to copy tuples to.
After copying t1 - t4, the end of a tuple aligns with the end of a
memory page. Now we can map the contents of Chunk 2 after the
current position without creating a gap. The remaining tuples of
Chunk 1 t5 and t6 are copied to the end of the address space.

As the memory mapping system calls have noticeable cost, map-
ping the contents of a chunk to a new virtual address space does
come at some cost too. Mapping the largest chunks and copying
the smallest, ensures that we map chunks, for which the advantage
over copying is the largest.

Applying Module to Single Batch. As we can load all values as
a single PyTorch Tensor object now, we just need to apply the
module once to that tensor and store the resulting tensor with all
outputs.

Merging Forwarded Attributes with Results. As we change the
order of tuples in the hybrid method, we need to maintain some
position information to be able to find the output value for each
tuple. We divide the new address space we mapped the inputs to

Chunk 1 Contiguous Address Space
< t1 o t13 ‘
@ @

g g
a 2 3 o t14 t15
o t4 [¢] t16
@ (o}
8 ® B
a t5 ‘ a t17
o t6 o t18 ‘ t19
@ @
I g
o a ‘ t20
2 t21

Chunk 2 %

a t22 t23
7 —
% S t24
a t8 ‘ t9 8

o t
= ‘ 10 'l:]
S x ©2 13
& th]

L & "

; t12 - 7
8 : |
o &

o 8 ‘ t9

Chunk 3 ° ‘ t10

=)
©
o t11
o t13 ‘ —
@
o - t12 t5
a t14 t15 s
—_ ©
— a 6
le] 16 —
(o}
&
a 17
© t18 ‘ t19
@
g
a ‘ 20
» t21
@
g
a t22 t23
= t24
@
i<}
®©
o

Figure 6: Effect of the hybrid mapping method. The contents
of chunk 3 are mapped first. Then, the tuples t1 - t4 are copied
from chunk 1 so the end of a tuple coincides with the end of
a memory page. Next, the contents of chunk 2 are mapped.
Finally, the remaining elements (t5 - t6) of chunk 1 are copied
to the end.

into segments. Within a segment, all tuples are stored in the same
order as before the reordering. For each segment, we store the new
position in the new ordering as well as the original tuple position
of the first element of the segment in a lookup table. Figure 7 shows
the lookup table for the example in Figure 6. The first segment in
the new address space includes the tuples t13 - t24. It is stored at
the first position, so we store the entry [t13, 1] in the lookup table.
The next segment is located at position 13 and covers the tuples t1 -
t4. Its respective entry for this segment is [t1, 13]. Next, there is
the segment covering t7 - t12 with the entry [t7, 17] and finally
the last segment with the entry [t5, 23]. The entries in the table
are sorted by the original tuple position for faster lookups.

When the data paths are merged again, each element can be
found with this table. First, we find the largest element ij,p)e in
the lookup table, which is smaller or equal than the value igearch
we are looking for. Then, we retrieve the new position inew by
adding the respective new position ji,p)e to the distance between
isearch and itaple s follows: inew = jrable + (isearch — itable)- FOr
example, we want to find the tuple with the original position t9
in the lookup table in Figure 7. First, we find the largest element,
which is still smaller than t9. This is t7 and the respective new
position is 17. Now we compute the new position of t9 as follows:
inew = 17 + (t9 — t7) = 19.

When a thread picks a chunk and starts a pipeline, it uses this
strategy to look up the new position of the result for the first tuple in
the chunk. Using this position it can merge the forwarded attributes
with the output value and push the tuple to the next operator. For
all tuples in the same segment, we can omit the lookup through
the table and simply pick the next value. At the end of a segment
we repeat the same lookup strategy to find the position of the next
tuple.

4 EVALUATION

To evaluate our implementation, we perform several benchmarks us-
ing a simple linear regression TorchScript module, computationally
more expensive neural network modules, and a K-Means imple-
mentation as a Torchscript module.

All benchmarks were performed on a machine with a 8-core
AMD Ryzen 7 3700X, clocks locked at 3.6 GHz and 48 GB DDR4
RAM clocked at 2133 MHz. Directories containing relevant binaries
and data were cached in RAM with vmtouch. Each benchmark was
executed 11 times. We reported the median of these runs for all
experiments.

4.1 Query Stages
We divide the execution of queries into 6 stages.

(1) Query compilation

(2) Loading the required data and the PyTorch / TorchScript

module

(3) Computing the input features for the module

(4) Moving the input tuples to a Tensor object

(5) Applying the module

(6) Removing temporary data structures and ending the query
This division is applicable to our implementation, but also to other
workflows which perform similar tasks. Figure 8 shows the exe-
cution of a query using a linear regression model and some input
computation. There are three graphs, which depict the benchmarks
for different batching methods. batched stands for the approach of
iterating over the input data in mini-batches described in Section
3.4.2. The methods copy and hybrid move the input data to a single
batch, to which the module is only applied once. While copy does
this by simply coping all inputs to a contiguous memory region,
hybrid uses the memory mapping method described in Section 3.4.3.

The plot in Figure 8 already gives us some insights into the cost

of the individual stages. First, the compilation stage makes up a
very little part of the total execution time. Since Umbra uses an
adaptive compilation backend, which starts executing the generated
IR immediately with a virtual machine, this is expected.

Lookup Table

Tuple New Ordering

Position Position
t1 13
t5 23
t7 17

t13 1 w

1 2|3|4|5 6 |7 8|9|10|11 12 13|14|15|16 17 |1 18 | 19 20|21|22 23 | 24

3 | t14 | 115 t16 t17 | t18 |19 | 120 |t21 |22 t23 |t24 | t1 | t2 | t3 t4 | t7 | 8 | t9 [t10 t11 t12| t5 | t6

Figure 7: Visualization of element reordering and maintained position information. This table maintains a mapping from the
original tuple positions to the new positions after the order was changed. It suffices to store only the first index of sequential
segments in the new ordering. Subsequent tuples can be found with their respective offset.

compilation loading data and module computing inputs

[[I[II]]] moving to tensor [applying module teardown

batched —

] |I:|:|:|:|:|:|:|]:

hybrid - —

0 5 10 15 20
Computation Time in Milliseconds

Figure 8: Linear regression execution for 100 thousand tu-
ples. Execution time of a query split into stages for different
Umbra configurations.

Loading the TorchScript module does, however, take about a
third of the total time. This is a significant overhead. Furthermore,
this overhead does not depend on the input size. In the following,
we will see that it strongly affects performance for small queries.

Computing the inputs for the model in the third stage is done
with plain Umbra operators. Nonetheless, we used custom mate-
rialization methods in our implementation. Note that the hybrid
method’s use of memory mapped files can lead to slower material-
ization, which will be part of this stage.

While the batched method does not need to move the input data
to feed it to the module, copy and hybrid do spend some time in
this stage. Naturally, copying the whole input to a new memory
region does take measurable time. But also the hybrid method,
which copies only very little data takes some time in this stage.

The module application stage is the most interesting for us. We
can see that the methods take very different times here. In the copy
method, we measure the time of a single call of the modules forward
method. However, this is also the case for the hybrid method. Here
we can see that mapping chunks of memory into new regions
has performance implications when accessing these regions again.
Profiling has shown that the number of page faults in the hybrid
method higher compared to the copy method. Nonetheless, the
time required to copy the input easily outweighs that overhead
in this case. The batched method spends much more time in the
application stage. This is the case because, in this method, we call

the modules forward method many times. Even though TorchScript
uses a lightweight interpreter to execute the modules, there is some
significant overhead for each individual call. We verified that the
increase in computation time is caused by the forward method.
Profiling has shown that the time spent in other parts of this stage
is negligible.

Finally, there is the teardown stage, which comprises everything
happening after the application of the TorchScript module. This
includes the deallocation of allocated memory during the query.
In case of the hybrid method, it also entails some system calls,
which release the memory mapped files. Furthermore, this stage
also includes a simple aggregation, which counts all elements. This
is needed as a final consumer in the last executed pipeline. Hence,
also the position based lookup described in Section 3.4.3 is included
in this stage. We did not observe noteworthy effects in this stage
and it requires only little time in all experiments.

4.2 Linear Regression Performance

As a first benchmark we chose linear regression on the New York
Taxi dataset from 2016 [23]. The usual objective for this dataset is
to predict the duration of individual taxi trips. However, we do not
build a good model for this prediction, as we are only interested
in the performance of our data processing workflow. Nevertheless,
we use the realistic data points to create a realistic computational
task. In the following, we will see that input computation can pose
considerable computational cost. As inputs to our models we use:

Vendor id of the taxi

Trip start time of the day normalized to a range of [0, 1]
Count of passengers in the trip

Coordinates of the start and end point of the trip normalized
to a range of [0, 1]

o The air distance between start and end point of the trip
normalized to a range of [0, 1]

The normalization and distance calculations make up a realistic
input feature computation task.

4.2.1 Choosing the Best Umbra Batching Mode. Table 1 shows
the execution times of our linear regression query for input set
sizes from 10 to 108 tuples. In the case of linear regression, the
TorchScript module does not require much memory. Therefore,

Batching Mode | 10! 10? 10° 10* 10° 100 107 108
batched 12ms 12ms 13ms 15ms 23ms 49ms 246ms 2,061 ms
copy 11ms 11ms 11ms 12ms 23ms 64ms 426 ms 3,870 ms
hybrid 11ms 11ms 11ms 12ms 2Ims 75ms 246ms 1,666 ms

Table 1: Linear regression execution times in milliseconds of Umbra batching methods over different input sizes

we can choose the batching method freely here, while we need to
choose the batched method for larger modules. Here we can see that
the different computational characteristics of each method cause
differing overhead for distinct input sizes. Copying to a single batch
is naturally inefficient and listed here only for reference. This can
be observed clearly for larger inputs.

For small input sets, the multiple calls to the modules forward
function when using multiple batches outweigh even the over-
head of the copy method. Also for very large input sets the batched

method performs significantly worse than the hybrid method. Nonethe-

less, for input sizes of 10% and 107, there is no advantage of using
hybrid over batched. Because the performance difference between
those methods is so small we default to the hybrid method whenever
the memory constraints allow it.

4.2.2 Comparison to Alternative Systems. To evaluate our imple-
mentation, we compare it to other possible systems, which achieve
the same results:

e Python: Load the data from a CSV file and perform all
operations in Python.

o DuckDB: The data is stored in-memory in a DuckDB [18]
instance. DuckDB is used to compute input features, which
are further processed in a Python runtime, which applies
the module.

e Umbra Server: The data is stored in Umbra. Umbra com-
putes the input features and transfers them to a Python
runtime analogously to DuckDB.

Figure 9 shows the results of executing linear regression queries
on the New York Taxi dataset. We can see at Figure 9a that our
implementation yields a low throughput for very small input sets.
However, the throughput is strongly increasing with larger input
sets. When looking at 10a, we can see that the reason for this is
that our implementation needs to spend a lot of time loading the
module. This constant overhead has a large effect on small queries,
but it becomes more and more irrelevant, as the size of the input
set and along with the computation time of other execution stages
of the query grow larger.

When looking at 9b and 10b, we can see that our implementation
yields clearly superior performance over the other systems. Figure
10b reveals furthermore, how most of the computation time for
larger input sets is spent. The Python system is unsurprisingly slow
and spends significant time on loading the data from CSV files,
but furthermore spends most of its time with computing the input
features for the module. More interesting insights can be gained
from the decompositions of the DuckDB and Umbra Server systems
computation time. First, the input computation stage of DuckDB is
faster than using the Umbra Server. Umbra’s query engine is much
faster than DuckDB. So here we can observe, that the inter-process
communication between two systems is expensive. The reason for

—+— Umbra Python DuckDB —+— Umbra Server

800000 5 —

600000

400000

Tuples / Second

200000

ol &
0 2000 4000 6000 8000 10000
No of Tuples

(a) Input scaling up to 10 thousand tuples

5
2
IS

Tuples / Second
N ow

W

°
°

0.2 0.4 0.6 0.8 1.0
No of Tuples 1e7

(b) Input scaling up to 10 million tuples

Figure 9: Throughput benchmark of linear regression for
different input sizes.

compilation loading data and module

[[[II7]]] moving to tensor

computing inputs

applying module teardown

Umbra - E

Python 4 l
DuckDB - l

Umbra Server - l

0 2 4 6 8 10
Computation Time in Milliseconds

(a) Linear regression execution for 100 tuples

Umbra -
Python 4
DuckDB - H

Umbra Server - ﬂ

2500 5000 7500 10000 12500 15000 17500
Computation Time in Milliseconds

(b) Linear regression execution for 1 million tuples

Figure 10: Runtime decomposition of linear regression.

Umbra Python DuckDB —+— Umbra Server

25000
- g *

20000

15000

10000

Tuples / Second

5000

0 20000 40000 60000

No of Tuples

80000 100000

Figure 11: Throughput scaling of 5 million parameter neural
network benchmark in tuples per second.

this, is that DuckDB runs within the Python process, which will
use the data. This allows the use of shared memory between the
database and the Python process. In contrast to that, the Umbra
Server needs to send all of its data over a Unix socket.

Another key insight we gain from 10b is that our implementa-
tion can execute the whole query faster than Python can create
a PyTorch Tensor object. Furthermore, the feature computation
and moving them from the database to Python takes much longer
than that. We conclude from this that integrating computation into
the database yields irrefutable performance improvement potential
compared to systems using a Python runtime.

4.3 Neural Network Performance

Using a simple linear regression module results in very little com-
putation time spent by applying the module, as linear regression is
not very computationally expensive. To explore the behavior of our
implementation with more computationally intensive TorchScript
modules, we perform the same benchmark with a neural network
instead of a linear regression module. This neural network consists
of roughly 5 million parameters organized in five large layers. In
comparison to modern neural networks, this network is still rela-
tively small. To reduce the slow downs of control flow in Python
for the competing systems we apply the module to a single batch
of input tuples. As a result, we need to limit the number of tuples
to keep the memory usage manageable.

Figure 11 shows the results of our benchmark with input set
ranging from 100 to 100 thousand input tuples. It reveals that in
this case our implementation has a significantly lower throughput
than all other systems we tested. The difference of roughly 40% is
not tremendous, but still unexpected. When looking at 12a, we see
that the required time to load the module increases in comparison
to the linear regression example from about 8 milliseconds to about
20 milliseconds. This is expected, as the neural network module
is much larger than the linear regression module. Furthermore,
we can see that already for 100 input tuples, the required time to
apply the module to the data is several times larger, than the other
systems. Figure 12b shows that this is also the case for larger input
set. Here, all other parts of the query take almost no time. The
module application section of the query consists of a single call
to the forward method of the TorchScript module in this case, as
we are using a single input batch. This leaves no other explanation
than the implementation of TorchScript modules in C++ simply
performs worse than regular PyTorch used from Python.

compilation loading data and module computing inputs
[[II111] moving to tensor i applying module teardown
Umbra -
Python 4
DuckDB -
Umbra Server -
10 20 30 40 50

Computation Time in Milliseconds

(a) 5 million parameter neural network for 100 tuples

Python 4

DuckDB -

Umbra Server I

1000 2000 3000 4000 5000 6000

Computation Time in Milliseconds

(b) 5 million parameter network for 100 thousand tuples

Figure 12: Running time decomposition of neural network.

TorchScript C++ | 4.6 s
PyTorch C++ | 4.0s
TorchScript Python | 4.1s
PyTorch Python | 4.0 s

Table 2: Comparison of execution times in different versions
of PyTorch

4.3.1 TorchScript Performance Comparison. It seems plausible that
using a TorchScript module in a C++ environment should yield
roughly the same performance as as using the same TorchScript
module from Python or performing the same operations as regular
PyTorch methods in Python. As we clearly observe otherwise in
Figure 11, we create a new benchmarks comparing the different
possible ways of using PyTorch to apply the neural network module.
Table 2 shows that all configurations perform very similarly, except
using a TorchScript module from C++, which is about 14% slower.

There is a reasonable explanation why TorchScript might be
slower than PyTorch. As TorchScript modules are essentially just
code blocks consisting of a subset of Python combined with the
parameter data, they cannot be immediately executed. In C++ envi-
ronments PyTorch invokes an interpreter to execute modules. It is
plausible that this interpreter executes the module slower than the
regular Python interpreter can. Still, this difference is large and we
suspect that there might be potential for optimizations of Torch-
Script modules in PyTorch. Additionally, the difference we observe
when applying the module in our integrated system is significantly
larger than in this benchmark. Finding a reason for this is subject
to further research.

Umbra Python DuckDB —+— Umbra Server

—

—_—

400000

300000

200000

Tuples / Second

100000

o] 4

0.0 0.2 0.4 0.6 08 10
No of Tuples 1e7

Figure 13: Throughput of 5 million parameter neural network
benchmark using the GPU applied to 10 million tuples

compilation

[[IIII7] moving to tensor [

Umbra GPU

Python GPU

loading data and module computing inputs

applying module teardown

=

DuckDB GPU

Umbra Server GPU

25 50 75 100 125 150 175 200
Computation Time in Seconds.

Figure 14: Running time of 5 million parameter neural net-
work benchmark using the GPU applied to 10 million tuples

4.3.2 GPU Performance. The sub-par performance of our imple-
mentation in the neural network benchmark does, however, not
necessarily mean that our implementation cannot perform well on
queries involving neural networks. An essential method of acceler-
ating neural network computations is using GPUs.

Figure 13 shows that the performance of our implementation
can be better than the other tested systems for computationally
expensive neural networks. There is still some constant overhead
for loading the TorchScript module to the GPU which limits per-
formance for small input sets. Again, the overhead is larger than
in a Python runtime of PyTorch. Figure 13 shows that for large
input sets our implementation is nevertheless faster than the other
tested systems. As visible in Figure 14, the time required to apply
the module on the GPU is roughly equal in all systems. Exactly
as in the linear regression benchmark, our implementation has
a performance advantage in the feature computation and tensor
creation stages.

4.4 K-Means Performance

Additionally to linear regression and neural networks, we test our
implementation with a module that implements the K-Means clus-
tering algorithm. Umbra does already provide a K-Means operator
to perform the algorithm.

The majority of the computation in the K-Means algorithm is
spent for computing the distance between all data points and all
cluster centers. These distances are then used to determine the
nearest cluster for each data point.

There is a fundamental difference between the two implementa-
tions we are testing in this step. Umbra’s native implementation
iterates over the data points and computes the distance to each

—+— native TorchScript module TorchScript module GPU

500000

400000

300000

200000

Tuples / Second

100000

0

0 2000 4000 6000 8000
No of Tuples

10000

(a) Input scaling comparison up to 10 thousand tuples.

le7 1.0

o o o
* o ®

Tuples / Second

°

°
o

0.0 0.2 04 0.6 08 1.0
No of Tuples 1e7

(b) Input scaling comparison up to 10 million tuples.

Figure 15: K-Means throughput scaling for different input
sizes.

cluster center for each point. It then immediately determines the
nearest cluster and does only store the new associated cluster id.

In contrast to that, our PyTorch implementation can only excel
by using vectorized functions over large chunks of data. This means
that the best way to implement K-Means using PyTorch is to com-
pute a distance matrix between all data points and all cluster centers.
The nearest cluster center for each data point is then computed
by another PyTorch function using the distance matrix. Creating
this distance matrix results in the PyTorch implementation using
significantly more memory bandwidth. Therefore, it is expected
that our implementation using a TorchScript module does not reach
the same performance as the native operator does.

Figure 15 shows that the TorchScript module is roughly two
times slower than the native implementation for smaller input sets.
This gap widens to a factor of roughly 10 times for input sizes above
400 thousand tuples, after which it remains stable. Our TorchScript
module is also capable of running on the GPU. In figures 15a and
15b we can see, that using the GPU yields very low performance
for small inputs, but surpasses the CPU version for larger input
sets. We also observe that most of the time is spent transferring
the data to the GPU. The actual computation of our TorchScript
module on the GPU is slightly faster than Umbra’s native K-Means
implementation. It is, however, important to note that the GPU
version cannot be arbitrarily scaled to larger input sizes. As all data
points need to be present in memory and available memory on
GPUs is usually much smaller than the main memory, this method
will stop working for much smaller input sets, than are possible
with the native implementation.

Yet, one noteworthy aspect is that implementing a new Umbra
operator is a substantial amount of work requiring expert knowl-
edge. Umbra’s native K-Means implementation consists of over
1000 lines of code distributed over several header and implementa-
tion files. In contrast to this, our PyTorch module for K-Means is
only 25 lines long and comparably very simple. Additionally, there

—+— hybrid copy batched

800000

600000

400000

Tuples / Second

200000

0

0 2000 4000 6000 8000 10000

No of Tuples

(a) Input scaling comparison up to 10 thousand tuples.

1le7
. /__o——-

=
Y

0.0 02 04 06 08 10
No of Tuples le7

w

Tuples / Second
~

o

(b) Input scaling comparison up to 10 million tuples.

Figure 16: Throughput comparison of hybrid method and
copy for linear regression

are many open source implementations of K-Means using PyTorch,
which we could just reuse. So while the native operator for K-Means
is clearly superior, one would need to evaluate whether implement-
ing a native Umbra operator is worth the additional effort for new
algorithms. While user defined operators introduced by Sichert et
al. also provide a way for users to integrate new algorithms into
the database, the out-of-the box GPU support might still make our
approach more attractive [22].

4.5 Performance Implication of Using a Single
Batch

Section 3.4.3 shows a way of moving data to different virtual address
spaces. Our hybrid method relies on mapping memory pages to
new addresses and only copying small parts of the data for better
speed. To verify that this method does really improve performance,
we compare it to just copying all tuples. Figure 16a shows that using
our hybrid method does not make a large difference for small input
sets, compared to just copying all values. Using a larger input set,
however, makes the copy method significantly slower, which can
be seen in Figure 16b and 17b.

In Figure 17b we cannot only see that copying does take a lot
of time. It also shows that applying the module using the hybrid
method is slower than using the copy method. Furthermore, profil-
ing has shown that the time spent handling page faults increased
by over 30% when switching from the copy method to our hybrid
method. This results in an increase of 30% of time spent in the
module application stage for linear regression. The reason for this
is that the MMU needs to translate the new virtual addresses, we
use to access the input data. Our use of mmap which maps these
new virtual addresses to existing physical memory changes the
page table and puts additional load on the MMU translating virtual
addresses to physical addresses.

compilation loading data and module computing inputs

[m—
[[III7I]] moving to tensor

batched -
" [
hybrid 4

0 2 4 6 8 10 12
Computation Time in Milliseconds

applying module teardown

—
NIRRT
=

0 50 100 150 200 250 300 350 400
Computation Time in Milliseconds

batched 4

copy A

hybrid 4

(b) Linear regression applied to 10 million tuples.

Figure 17: Running time decomposition of hybrid method
and copy for linear regression

The additional cost of accessing the new virtual memory ad-
dresses is outweighed by the avoidance of copying all data, as
visible in Figure 16b. We also observe much smaller impact on
the application of the larger neural network module compared to
the linear regression module. This reduces the module application
time increase to only 1%. Nonetheless, we consider it noteworthy
that our hybrid method, albeit useful in our case, does not come
completely for free.

5 CONCLUSION

In this work we presented how we implemented an integration of
PyTorch into Umbra as a relational operator. We show that modern
deep learning frameworks can be integrated within complex com-
piling database systems with relatively low implementation effort.
Nonetheless, we added a large set of computational capabilities
to the database system allowing not only the application of deep
learning models but also providing a way to efficiently execute
arbitrary vector operation based algorithms, while supporting the
use of GPU acceleration.

We show that our integrated implementation outperforms cur-
rently popular alternative workflows. Finally, we conclude that a
tight integration of computational operations into database systems
is a promising way of enabling faster query processing than current
solutions. Even though our implementation focuses on inferencing,
we deem this approach also usable for training new models.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

[10]

[11]

[12]

[13]
[14]

[15

[16]

[17]

(18]

[19

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. CoRR abs/1603.04467 (2016).

Owen Duncan, John Parente, and Tim Sherer. 2021. Data Mining Algorithms
(Analysis Services - Data Mining). https://docs.microsoft.com/en-us/analysis-
services/data-mining/data-mining-algorithms-analysis-services-data-mining
Google. 2021. What is BigQuery ML? https://cloud.google.com/bigquery-ml/
docs/introduction

Michael Hansen, David Coulter, Gary Ericson, and Mike Ray. 2021. What is SQL
Server Machine Learning Services with Python and R? https://docs.microsoft.
com/en-us/sql/machine-learning/sql-server-machine-learning-services

Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADIib Analytics Library or MAD Skills, the
SQL. CoRR abs/1208.4165 (2012). arXiv:1208.4165 http://arxiv.org/abs/1208.4165
Konstantinos Karanasos, Matteo Interlandi, Fotis Psallidas, Rathijit Sen,
Kwanghyun Park, Ivan Popivanov, Doris Xin, Supun Nakandala, Subru Kr-
ishnan, Markus Weimer, Yuan Yu, Raghu Ramakrishnan, and Carlo Curino.
2020. Extending Relational Query Processing with ML Inference. In 10th
Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The
Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf

Nick R Katsipoulakis, Yuanyuan Tian, Fatma Ozcan, Hamid Pirahesh, and
Berthold Reinwald. 2015. A Generic Solution to Integrate SQL and Analytics for
Big Data.. In EDBT. 671-676.

Saad M. Khan and Libusha Kelly. 2019. Fireworks: Reproducible Machine Learn-
ing and Preprocessing with PyTorch. Journal of Open Source Software 4, 39 (2019),
1478. https://doi.org/10.21105/joss.01478

Tim Kraska, Umar Farooq Minhas, Thomas Neumann, Olga Papaemmanouil,
Jignesh M Patel, Chris Ré, and Michael Stonebraker. 2021. ML-In-Databases:
Assessment and Prognosis. Data Engineering 3 (2021).

Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In SIGMOD Conference. ACM, 743-754.

Edo Liberty, Zohar S. Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun,
Ramesh Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das,
Can Balioglu, Saswata Chakravarty, Madhav Jha, Philip Gautier, David Arpin,
Tim Januschowski, Valentin Flunkert, Yuyang Wang, Jan Gasthaus, Lorenzo
Stella, Syama Sundar Rangapuram, David Salinas, Sebastian Schelter, and Alex
Smola. 2020. Elastic Machine Learning Algorithms in Amazon SageMaker. In
Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David
Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini,
and Hung Q. Ngo (Eds.). ACM, 731-737. https://doi.org/10.1145/3318464.3386126
Shangyu Luo, Zekai J Gao, Michael Gubanov, Luis L Perez, and Christopher
Jermaine. 2018. Scalable linear algebra on a relational database system. IEEE
Transactions on Knowledge and Data Engineering 31, 7 (2018), 1224-1238.
Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539-550.

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. www.cidrdb.org.

Oracle. 2021. Neural Networks. https://docs.oracle.com/en/database/oracle/
oracle-database/18/dmcon/neural-network.html

Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi, and
Konstantinos Karanasos. 2022. End-to-End Optimization of Machine Learning
Prediction Queries. In Proceedings of the 2022 International Conference on Manage-
ment of Data (Philadelphia, PA, USA) (SIGMOD °22). Association for Computing
Machinery, New York, NY, USA, 587601. https://doi.org/10.1145/3514221.3526141
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.). Curran Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Ma-
chinery, New York, NY, USA, 19811984. https://doi.org/10.1145/3299869.3320212
Sandeep Singh Sandha, Wellington Cabrera, Mohammed Al-Kateb, Sanjay Nair,
and Mani Srivastava. 2019. In-database distributed machine learning: demon-
stration using Teradata SQL engine. Proceedings of the VLDB Endowment 12, 12

[20]

(2019).

Maximilian Schiile, Frédéric Simonis, Thomas Heyenbrock, Alfons Kemper,
Stephan Giinnemann, and Thomas Neumann. 2019. In-database machine learn-
ing: Gradient descent and tensor algebra for main memory database systems.
BTW 2019 (2019).

Maximilian E Schiile, Harald Lang, Maximilian Springer, Alfons Kemper, Thomas
Neumann, and Stephan Giinnemann. 2021. In-Database Machine Learning with
SQL on GPUs. (2021).

Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators: Efficiently
Integrating Custom Algorithms into Modern Databases. Proc. VLDB Endow. 15, 5
(2022), 1119-1131. https://www.vldb.org/pvldb/vol15/p1119-sichert.pdf

City of New York. 2016. Taxi and Limousine Commission Trip Record Data.
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

SQLAIchemy authors and contributors. 2021. The Python SQL Toolkit and Object
Relational Mapper. https://www.sqlalchemy.org/

The TensorFlow Team. 2021. Reading PostgreSQL database from TensorFlow IO.
https://www.tensorflow.org/io/tutorials/postgresql

The TensorFlow Team. 2021. tfdata.experimental.SqlDataset.
tensorflow.org/api_docs/python/tf/data/experimental/SqlDataset

https://www.

https://docs.microsoft.com/en-us/analysis-services/data-mining/data-mining-algorithms-analysis-services-data-mining
https://docs.microsoft.com/en-us/analysis-services/data-mining/data-mining-algorithms-analysis-services-data-mining
https://cloud.google.com/bigquery-ml/docs/introduction
https://cloud.google.com/bigquery-ml/docs/introduction
https://docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services
https://docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services
https://arxiv.org/abs/1208.4165
http://arxiv.org/abs/1208.4165
http://cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf
https://doi.org/10.21105/joss.01478
https://doi.org/10.1145/3318464.3386126
https://docs.oracle.com/en/database/oracle/oracle-database/18/dmcon/neural-network.html
https://docs.oracle.com/en/database/oracle/oracle-database/18/dmcon/neural-network.html
https://doi.org/10.1145/3514221.3526141
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3299869.3320212
https://www.vldb.org/pvldb/vol15/p1119-sichert.pdf
https://www.sqlalchemy.org/
https://www.tensorflow.org/io/tutorials/postgresql
https://www.tensorflow.org/api_docs/python/tf/data/experimental/SqlDataset
https://www.tensorflow.org/api_docs/python/tf/data/experimental/SqlDataset

	Abstract
	1 Introduction
	2 Related Work
	3 Integrating PyTorch into Umbra
	3.1 Umbra's Execution Model
	3.2 TorchScript Modules
	3.3 Dataflow Schema
	3.4 Dataflow Implementation

	4 Evaluation
	4.1 Query Stages
	4.2 Linear Regression Performance
	4.3 Neural Network Performance
	4.4 K-Means Performance
	4.5 Performance Implication of Using a Single Batch

	5 Conclusion
	References

